[1]
David Baraff. An introduction to physically based modeling: rigid body simulation i—unconstrained rigid body dynamics. SIGGRAPH Course Notes, 1997.

[2]
Byoung Seon Choi. An order-recursive algorithm to solve the 3-d yule-walker equations of causal 3-d ar models. IEEE Transactions on Signal Processing, 47(9):2491–2502, Sep 1999.

[3]
Carl De Boor. Package for calculating with b-splines. SIAM Journal on Numerical Analysis, 14(3):441–472, 1977.

[4]
David Eberly. Polyhedral mass properties, Dec 2002.

[5]
David Eberly. Representing a circle or a sphere with nurbs, Jan 2003.

[6]
Gene H. Golub and Henk A. van der Vorst. Eigenvalue computation in the 20th century. Journal of Computational and Applied Mathematics, 123(1):35–65, 2000. Numerical Analysis 2000. Vol. III: Linear Algebra.

[7]
R.A. Jarvis. On the identification of the convex hull of a finite set of points in the plane. Information Processing Letters, 2(1):18–21, 1973.

[8]
Cedric Malherbe and Nicolas Vayatis. Global optimization of lipschitz functions. In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, page 2314–2323. JMLR.org, 2017.

[9]
John H. Mathews and Kurtis D. Fink. Numerical methods using MATLAB. Pearson Prentice Hall, London, 4th edition, 2004.

[10]
John H. Mathews and Kurtis D. Fink. Runge—Kutta–Fehlberg method (RKF45), 2004.

[11]
Jacques Mégel and Janis Kliava. Metacenter and ship stability. American Journal of Physics, 78(7):738–747, Jul 2010. 33 pages, 17 figures, 25 références.

[12]
Ching-Kuang Shene. Computing with geometry, Jan 2005.

[13]
Fulvio Tonon. Explicit exact formulas for the 3-d tetrahedron inertia tensor in terms of its vertex coordinates. Journal of Mathematics and Stattistics, 1(1):8–11, Jan 2005.

[14]
Ruye Wang. Jacobi eigenvalue algorithm for symmetric real matrices, 2018.

[15]
B. P. Welford. Note on a method for calculating corrected sums of squares and products. Technometrics, 4(3):419–420, 1962.