Multi-dimensional optimisation of non-convex functions.
template <class Func>
solve(argument_type lbound, argument_type ubound, Func func) const -> argument_type
estimate_constant(bool rhs) -> void
sample_probability(scalar_type rhs) -> void
max_iterations(int rhs) -> void
max_evaluations(int rhs) -> void
function_precision(value_type rhs) -> void
argument_precision(argument_type rhs) -> void
constant(value_type rhs) -> void
estimate_constant() const -> bool
Estimate Lipschitz constant or not.
sample_probability() const -> scalar_type
Probability of choosing exploration step over exploitation step.
max_iterations() const -> int
Maximum number of iterations of the main loop.
max_evaluations() const -> int
Maximum number of function evaluations.
function_precision() const -> value_type
Function precision.
argument_precision() const -> argument_type
Argument precision.
constant() const -> value_type
Lipschitz constant (one for each dimension).