Multi-dimensional optimisation of non-convex functions. 
    
    
template <class Func> solve(argument_type lbound, argument_type ubound, Func func) const -> argument_typeestimate_constant(bool rhs) -> voidsample_probability(scalar_type rhs) -> voidmax_iterations(int rhs) -> voidmax_evaluations(int rhs) -> voidfunction_precision(value_type rhs) -> voidargument_precision(argument_type rhs) -> voidconstant(value_type rhs) -> voidestimate_constant() const -> boolEstimate Lipschitz constant or not.
sample_probability() const -> scalar_typeProbability of choosing exploration step over exploitation step.
max_iterations() const -> intMaximum number of iterations of the main loop.
max_evaluations() const -> intMaximum number of function evaluations.
function_precision() const -> value_typeFunction precision.
argument_precision() const -> argument_typeArgument precision.
constant() const -> value_typeLipschitz constant (one for each dimension).