using complex_array = std::conditional< is_complex< T >::value, blitz::Array< T, 1 >, blitz::Array< std::complex< T >, 1 > >::typeusing complex_polynomial = std::conditional< is_complex< T >::value, Polynomial< T >, Polynomial< std::complex< T > > >::typeusing pointer = value_type *using value_type = Tusing array_type = blitz::Array< T, 1 >reciprocal() const -> complex_polynomialcoefficients(int i) -> value_type &coefficients(int i) const -> const value_type &coefficients() -> array_type &coefficients() const -> const array_type &swap(Polynomial & rhs) -> voidorder() const -> intsize() const -> intend() -> pointerend() const -> const_pointerbegin() -> pointerbegin() const -> const_pointeroperator[](int i) -> value_type &operator[](int i) const -> const value_type &operator()(value_type x) const -> value_typeevaluate(value_type x) const -> value_type~Polynomial()operator=(Polynomial && rhs) -> Polynomial &Polynomial(Polynomial && rhs)operator=(const Polynomial & rhs) -> Polynomial &Polynomial(const Polynomial & rhs)Polynomial(std::initializer_list< T > coefs)Polynomial(array_type coefs)explicitPolynomial(int size, const T & value = T{0})explicitPolynomial()template <class T> schur_transform(const Polynomial< T > & p) -> autoSchur transform for polynomials with complex coefficients. Schur transform for polynomials with real coefficients.
template <class T> num_roots_inside_unit_disk(Polynomial< T > p) -> int
Finds the number of polynomial roots inside the unit disk.
template <class T> swap(Polynomial< T > & lhs, Polynomial< T > & rhs) -> void