using complex_array = std::conditional< is_complex< T >::value, blitz::Array< T, 1 >, blitz::Array< std::complex< T >, 1 > >::type
using complex_polynomial = std::conditional< is_complex< T >::value, Polynomial< T >, Polynomial< std::complex< T > > >::type
using pointer = value_type *
using value_type = T
using array_type = blitz::Array< T, 1 >
reciprocal() const -> complex_polynomial
coefficients(int i) -> value_type &
coefficients(int i) const -> const value_type &
coefficients() -> array_type &
coefficients() const -> const array_type &
swap(Polynomial & rhs) -> void
order() const -> int
size() const -> int
end() -> pointer
end() const -> const_pointer
begin() -> pointer
begin() const -> const_pointer
operator[](int i) -> value_type &
operator[](int i) const -> const value_type &
operator()(value_type x) const -> value_type
evaluate(value_type x) const -> value_type
~Polynomial()
operator=(Polynomial && rhs) -> Polynomial &
Polynomial(Polynomial && rhs)
operator=(const Polynomial & rhs) -> Polynomial &
Polynomial(const Polynomial & rhs)
Polynomial(std::initializer_list< T > coefs)
Polynomial(array_type coefs)explicit
Polynomial(int size, const T & value = T{0})explicit
Polynomial()
template <class T>
schur_transform(const Polynomial< T > & p) -> auto
Schur transform for polynomials with complex coefficients. Schur transform for polynomials with real coefficients.
template <class T>
num_roots_inside_unit_disk(Polynomial< T > p) -> int
Finds the number of polynomial roots inside the unit disk.
template <class T>
swap(Polynomial< T > & lhs, Polynomial< T > & rhs) -> void