Based on moving-average model.
using grid_type = Grid< T, N >
using array_type = Array< T, N >
using default_coefficient_solver = Fixed_point_iteration_yule_walker_solver< T, N >
using solver_ptr = std::unique_ptr< solver_type >
using solver_type = Yule_walker_solver< T, N >
generate(const grid_type & grid, array_type & result) -> voidvirtual
operator=(const MA_wavy_surface_generator &) -> MA_wavy_surface_generator &
MA_wavy_surface_generator(const MA_wavy_surface_generator &)
MA_wavy_surface_generator()
Based on autoregerssive model.
using solver_ptr = std::unique_ptr< solver_type >
using grid_type = Grid< T, N >
using array_type = Array< T, N >
generate(const grid_type & grid, array_type & result) -> voidvirtual
~AR_wavy_surface_generator()virtual
AR_wavy_surface_generator()
using rect3 = blitz::RectDomain< N >
using vec3 = blitz::TinyVector< T, N >
using generator_ptr = std::unique_ptr< generator_type >
using generator_type = Wavy_surface_generator< T >
using solver_ptr = std::unique_ptr< solver_type >
using solver_type = Yule_walker_solver< T, N >
using prng_type = std::mt19937
using array_type = Array< T, N >
using grid_type = Grid< T, N >
generate_white_noise(array_type result) -> voidprotected
calculate_coefficients() -> void
decay() const -> const vec3 &
decay(const vec3 & rhs) -> void
coefficient_solver() -> solver_type *
coefficient_solver() const -> const solver_type *
coefficient_solver(solver_ptr && ptr) -> void
template <class SeedSequence>
seed(SeedSequence & seq) -> void
seed() -> void
variance() const -> T
white_noise_variance() const -> T
coefficients() const -> const array_type &
acf() const -> const array_type &
acf(array_type acf_in) -> void
acf_generator() const -> const generator_ptr &
acf_generator(generator_ptr ptr) -> void
has_acf_generator() const -> bool
has_acf() const -> bool
has_coefficients() const -> bool
generate(const grid_type & grid, array_type & result) -> voidvirtual
ARMA_wavy_surface_generator_base(array_type acf_in)explicit
~ARMA_wavy_surface_generator_base()virtual
ARMA_wavy_surface_generator_base()
template <class T, int N>
covariance(blitz::Array< T, N > lhs, blitz::Array< T, N > rhs, Chirp_Z_transform< std::complex< T >, N > & fft) -> blitz::Array< T, N >
Computes autocovariance function of three-dimensional field.
Check AR (MA) process stationarity (invertibility).
template <class T, int N>
correlation(blitz::Array< T, N > lhs, blitz::Array< T, N > rhs, Chirp_Z_transform< std::complex< T >, N > & fft) -> blitz::Array< T, N >