Runge—Khutta—Fehlberg initial value problem solver.
verbose() const -> boolverbose(bool rhs) -> voidtolerance(T rhs) -> voidtolerance() const -> Tmax_step(T rhs) -> voidmax_step() const -> Tmin_step(T rhs) -> voidmin_step() const -> Ttemplate <class Function, int N> operator()(Function f, T t0, T t1, const blitz::TinyVector< T, N > & x0) -> blitz::TinyVector< T, N >
Solve system of ordinary differential equations with right hand sides f.
template <class Function, int N> solve(Function f, T t0, T t1, const blitz::TinyVector< T, N > & x0) -> blitz::TinyVector< T, N >
Solve system of ordinary differential equations with right hand sides f.
Calculate coefficients:
Calculate using a Runge—Kutta method of order 4. N.B. is not used here.
Calculate (denoted here as ) using a Runge—Kutta method of order 5. N.B. is not used here.
Calculate optimal step size .
Clamp step size to . Clamp time instant to .
~RKF45()operator=(RKF45 &&) -> RKF45 &RKF45(RKF45 &&)operator=(const RKF45 &) -> RKF45 &RKF45(const RKF45 &)RKF45()