Runge—Khutta—Fehlberg initial value problem solver.
verbose() const -> bool
verbose(bool rhs) -> void
tolerance(T rhs) -> void
tolerance() const -> T
max_step(T rhs) -> void
max_step() const -> T
min_step(T rhs) -> void
min_step() const -> T
template <class Function, int N>
operator()(Function f, T t0, T t1, const blitz::TinyVector< T, N > & x0) -> blitz::TinyVector< T, N >
Solve system of ordinary differential equations with right hand sides f
.
template <class Function, int N>
solve(Function f, T t0, T t1, const blitz::TinyVector< T, N > & x0) -> blitz::TinyVector< T, N >
Solve system of ordinary differential equations with right hand sides f
.
Calculate coefficients:
Calculate using a Runge—Kutta method of order 4. N.B. is not used here.
Calculate (denoted here as ) using a Runge—Kutta method of order 5. N.B. is not used here.
Calculate optimal step size .
Clamp step size to . Clamp time instant to .
~RKF45()
operator=(RKF45 &&) -> RKF45 &
RKF45(RKF45 &&)
operator=(const RKF45 &) -> RKF45 &
RKF45(const RKF45 &)
RKF45()