using bstream = ::vtb::base::bstream
template <class T, int N>
class vtb::geometry::Basis
Base classes
  • public Matrix< T, N >
Derived classes
Methods
  • clear() -> void
  • template <class ... Args>
    column_basis(Args ... cols) const -> Basis< T, N >
  • column(int n) const -> column_type
  • row(int n) const -> column_type
  • operator=(const array_type & rhs) -> Basis &
  • Basis(const array_type & rhs)
  • Basis(const matrix_type & rhs)
  • Basis()
template <class T, int N>
from(const Basis< T, N > & basis, const Vertex< T, N > & origin, const Vertex< T, N > & v) -> Vertex< T, N >
template <class T, int N>
to(const Basis< T, N > & b, const Vertex< T, N > & v) -> Vertex< T, N >
template <class T, int N>
rotation_matrix_xyz(const Vertex< T, N > & angle) -> Basis< T, N >
template <class T, int N>
transpose(Basis< T, N > & basis) -> void
template <class T, int N, class X>
operator*(const Basis< T, N > & lhs, const X & rhs) -> auto
template <class T, int N>
rotation_matrix_zyx(const Vertex< T, N > & angle) -> Basis< T, N >

Return rotation matrix specified by Euler angles. Rotation matrix is computed as the product of rotation matrices for each dimension. For Euler angles the matrix is written as

template <class T, int N>
inverse(const Basis< T, N > & basis) -> Basis< T, N >