cholesky() const -> Lower_triangular_matrix< T >
Cholesky decomposition.
public blitz::Array< T, 2 >
transpose_self() -> void
transpose() const -> Matrix< T >
inverse_self() -> Square_matrix< T > &
inverse() const -> Square_matrix< T >
is_toeplitz(T eps) const -> bool
is_toeplitz() const -> bool
is_positive_definite() const -> bool
Check if the matrix is positive definite using Cholesky decomposition. There is no check for symmetry.
is_symmetric(T eps) const -> bool
is_symmetric() const -> bool
is_square() const -> bool
Matrix(base_type rhs)
determinant() const -> T
lower_upper_triangular_self() -> Lower_upper_triangular_matrix< T > &
solve(const Vector< T > & b) const -> Vector< T >
inverse_self() -> Square_matrix< T > &
inverse() const -> Square_matrix< T >
permutations() const -> const int_array_type &
solve(const Vector< T > & b) const -> Vector< T >
backward_substitution(const Vector< T > & y) const -> Vector< T >
Backward substitution. Solves .
forward_substitution(const Vector< T > & b) const -> Vector< T >
Forward substitution. Solves .
eigen_values(T eps, int nsweeps) const -> Vector< T >
Compute eigen values. Find with the greatest absolute value that do not lie on the diagonal. Find sine and cosine by solving , where . Rotate matrix.
cholesky_indefinite() const -> Lower_triangular_matrix_ldlt< T >
template <class T>
solve(const Symmetric_matrix< T > & lhs, const Vector< T > & rhs) -> Vector< T >
template <class T>
solve(const Positive_definite_matrix< T > & lhs, const Vector< T > & rhs) -> Vector< T >
template <class T>
det(const Square_matrix< T > & rhs) -> T
template <class T>
inverse(const Lower_upper_triangular_matrix< T > & rhs) -> T
template <class T>
lower_upper_triangular(const Matrix< T > & rhs) -> Lower_upper_triangular_matrix< T >
template <class T>
solve(const Square_matrix< T > & lhs, const Vector< T > & rhs) -> Vector< T >
template <class T>
solve(const Lower_upper_triangular_matrix< T > & lhs, const Vector< T > & rhs) -> Vector< T >
template <class T>
trace(const Square_matrix< T > & rhs) -> T
template <class T>
det(const Lower_upper_triangular_matrix< T > & rhs) -> T
template <class T>
inverse(const Square_matrix< T > & rhs) -> T
template <class T>
eigen_values(const Symmetric_matrix< T > & rhs, T eps, int nsweeps) -> Vector< T >